
1 © Copyright 2013 Pivotal. All rights reserved. 1 © Copyright 2013 Pivotal. All rights reserved.

A Practical Use of Servlet 3.1:
Implementing WebSocket 1.0

Mark Thomas

September 2013

2 © Copyright 2013 Pivotal. All rights reserved.

Agenda

• Introductions

• WebSocket

• Implementation aims

• Mapping to Servlet 3.1 features

• Complicating factors

• Summary

• Questions

3 © Copyright 2013 Pivotal. All rights reserved.

Introduction

• markt at the Apache Software Foundation

• Apache Tomcat committer

• Developed the majority of Tomcat 7 and Tomcat 8

• Member of Servlet, WebSocket and EL expert groups

• Consultant Software Engineer at Pivotal

• ASF security team member

• Pivotal security team lead

• ASF infrastructure volunteer

4 © Copyright 2013 Pivotal. All rights reserved.

WebSocket RFC 6455

• Defined in RFC 6455

• Asynchronous messages

– Text

– Binary

– Control

• Single persistent connection

– No state management in the protocol

• Uses HTTP upgrade to start connection

– http://... -> ws://…

– https://... -> wss://…

5 © Copyright 2013 Pivotal. All rights reserved.

WebSocket RFC 6455

• Text and Binary messages

– All text messages are UTF-8 encoded

– 2^63 limit on data within a single frame

– Messages may be split across multiple frames

– No limit on message size

• Control messages

– Limited to 125 bytes of data

– May be sent at any time

• No multiplexing (there is an draft extension for this)

6 © Copyright 2013 Pivotal. All rights reserved.

WebSocket JSR 356

• No requirement to build on Servlet 3.1

– HttpSession passed as Object to avoid explicit

dependency

• Configuration styles

– Programmatic

– Annotation

• Provides client and server APIs

– Client API is sub-set of server API

7 © Copyright 2013 Pivotal. All rights reserved.

Implementation Aims

• JSR 356 compliant

• RFC6455 compliant

• Container neutral

– Only depends on Servlet 3.1 API

• Performance

– Container neutrality probably means sacrificing some

performance

8 © Copyright 2013 Pivotal. All rights reserved.

Mapping to Servlet 3.1 features

• Single persistent connection

• Asynchronous messages

• Requires non-blocking IO for a scalable solution

– Blocking IO is possible – it just doesn’t scale

• Use Servlet 3.1 non-blocking IO

9 © Copyright 2013 Pivotal. All rights reserved.

Mapping to Servlet 3.1 features

• Connection starts with HTTP upgrade

• Use Servlet 3.1 HTTP upgrade

• Annotation configuration

• Use Servlet 3.0 annotation scanning

10 © Copyright 2013 Pivotal. All rights reserved.

Annotation scanning

• Feature added in Servlet 3.0

• Implement ServletContainerInitializer

• Add @HandlesTypes

• When web application starts the container calls
ServletContainerInitializer#

 onStartup(Set<Class<?>>, ServletContext)

11 © Copyright 2013 Pivotal. All rights reserved.

Annotation scanning

@HandlesTypes({

 ServerEndpoint.class,

 ServerApplicationConfig.class,

 Endpoint.class})

public class WsSci implements

 ServletContainerInitializer { …

• ServerEndpoint for annotated endpoints

• Endpoint for programmatic endpoints

• ServerApplicationConfig for filtering endpoints

12 © Copyright 2013 Pivotal. All rights reserved.

Annotation scanning

• Need to scan every class for @HandlesTypes matches

• Scanning every class is (relatively) expensive

• Don’t want to scan if it isn’t necessary

• Servlet 3.0 provides options for minimizing scanning

– Specification language wasn’t clear

– Discovered Tomcat’s implementation wasn’t quite as

intended

13 © Copyright 2013 Pivotal. All rights reserved.

Annotation scanning

• SCIs discovered in container provided JARs are always

processed

• SCI discovery must follow the web application’s class

loader delegation model

• SCIs are not loaded from web application JARs excluded

using ordering preferences in web.xml

• JARs excluded from ordering preferences in web.xml are

not scanned for classes to be handled by any SCI

• <metadata-complete> has no impact on SCI

discovery or scanning of classes

14 © Copyright 2013 Pivotal. All rights reserved.

HTTP upgrade

• Feature added in Servlet 3.1

• Implement HttpUpgradeHandler

• Call HttpServletRequest#upgrade(…)

• Once the HTTP response has been sent to the client the

container calls
HttpUpgradeHandler#init(WebConnection)

• Use WebConnection to access the input and output

streams

15 © Copyright 2013 Pivotal. All rights reserved.

HTTP upgrade

package javax.servlet.http;

public interface HttpUpgradeHandler {

 void init(WebConnection connection);

 void destroy();

}

• Interface applications must implement to handle

upgraded connections

16 © Copyright 2013 Pivotal. All rights reserved.

HTTP upgrade

package javax.servlet.http;

public interface HttpServletRequest extends

 ServletRequest {

 …

 public <T extends HttpUpgradeHandler> T

 upgrade(

 Class<T> httpUpgradeHandlerClass)

 throws java.io.IOException,

 ServletException;

}

• Method that triggers the upgrade process

17 © Copyright 2013 Pivotal. All rights reserved.

HTTP upgrade

package javax.servlet.http;

public interface WebConnection

 extends AutoCloseable {

 ServletInputStream getInputStream()

 throws IOException;

 ServletOutputStream getOutputStream()

 throws IOException;

}

• Only provides access to the input and output

streams

18 © Copyright 2013 Pivotal. All rights reserved.

HTTP upgrade

• HttpUpgradeHandler implementations must have a

zero argument constructor

• WebConnection only has access to the input and

output streams

• Need to pass far more information to the
HttpUpgradeHandler instance

• No API defined for passing this information

• Applications must provide their own

19 © Copyright 2013 Pivotal. All rights reserved.

HTTP upgrade

public void preInit(

 Endpoint ep,

 EndpointConfig endpointConfig,

 WsServerContainer wsc,

 WsHandshakeRequest handshakeRequest,

 String subProtocol,

 Map<String,String> pathParameters,

 boolean secure) {

…

20 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

• Feature added in Servlet 3.1

• New methods added to ServletInputStream and

ServletOutputStream

• May only be used within asynchronous processing or

upgraded connections

• Once switched to non-blocking IO it is not permitted to

switch back to blocking IO

21 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

package javax.servlet;

public abstract class ServletInputStream

 extends InputStream {

 …

 public abstract boolean isFinished();

 public abstract boolean isReady();

 public abstract void setReadListener(

 ReadListener listener);

}

22 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

package javax.servlet;

public interface ReadListener extends

 java.util.EventListener{

 public abstract void onDataAvailable()

 throws IOException;

 public abstract void onAllDataRead()

 throws IOException;

 public abstract void onError(

 java.lang.Throwable throwable);

}

23 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

• Start non-blocking read by setting the ReadListener

• Container will call onDataAvailable() when there is

data to read

• Application may read once from the
ServletInputStream

• Application must call
ServletInputStream#isReady() before next read

• An IllegalStateException is thrown if applications

don’t do this

24 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

• If isReady() returns true, the application may read

again from the ServletInputStream

• If isReady() returns false, the application must wait

for the next onDataAvailable() callback

• The container will only call onDataAvailable() once

isReady() has returned false and there is data to read

• The container will only call onAllDataRead() when

the end of the InputStream is reached

25 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

package javax.servlet;

public abstract class ServletOutputStream

 extends OutputStream {

 …

 public abstract boolean isReady();

 public abstract void setWriteListener(

 WriteListener listener);

}

26 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

package javax.servlet;

public interface WriteListener extends

 java.util.EventListener{

 public void onWritePossible()

 throws IOException;

 public void onError(

 java.lang.Throwable throwable);

}

27 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

• Start non-blocking write by setting the WriteListener

• Container will call onWritePossible() when data can

be written without blocking

• Application may write once to the
ServletOutputStream

• Application must call
ServletOuputStream#isReady() before next write

• An IllegalStateException is thrown if applications

don’t do this

28 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

• If isReady() returns true, the application may write

again to the ServletOutputStream

• If isReady() returns false, the application must wait

for the next onWritePossible() callback

• The container will only call onWritePossible() once

isReady() has returned false and data may be written

without blocking

29 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

private static class WsReadListener

 implements ReadListener {

 …

 public void onDataAvailable() {

 try {

 wsFrame.onDataAvailable();

 } catch … {

 …

 }

 }

}

30 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

public class WsFrameServer extends WsFrameBase {

 public void onDataAvailable() throws IOException {

 synchronized (connectionReadLock) {

 while (isOpen() && sis.isReady()) {

 int read = sis.read(inputBuffer, writePos,

 inputBuffer.length - writePos);

 if (read == 0) return;

 if (read == -1) throw new EOFException();

 writePos += read;

 processInputBuffer();

 }

 }

 }

}

31 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

private static class WsWriteListener

 implements WriteListener {

 …

 public void onWritePossible() {

 wsRemoteEndpointServer.

 onWritePossible();

 }

 }

}

32 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

public void onWritePossible() {

 boolean complete = true;

 try {

 while (sos.isReady()) {

 complete = true;

 for (ByteBuffer buffer : buffers) {

 if (buffer.hasRemaining()) {

 complete = false;

 sos.write(buffer.array(),
 buffer.arrayOffset(),

 buffer.limit());

 buffer.position(buffer.limit());

 break;

 }

 }

33 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

 if (complete) {

 wsWriteTimeout.unregister(this);

 if (close) close();

 break;

 }

 }

 } catch (IOException ioe) {…}

 if (!complete) {

 long timeout = getSendTimeout();

 if (timeout > 0) {

 timeoutExpiry = timeout + System.currentTimeMillis();

 wsWriteTimeout.register(this);

 }

 }

 }

34 © Copyright 2013 Pivotal. All rights reserved.

Non-blocking IO

• Timeouts

– Only have access to the ServletInputStream and

ServletOutputStream

– No API for setting timeouts

– Had to create a timeout mechanism for WebSocket

writes

• Thread safety

– Lots of places to trip up

– Write with multi-threading in mind

– Test extensively

35 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Non-blocking styles

• Server uses Servlet 3.1 style

– Read/write listeners and isReady()

• WebSocket API

– java.util.concurrent.Future

– javax.websocket.SendHandler

• Client uses AsynchronousSocketChannel

– java.nio.channels.CompletionHandler

• Need to convert between these

36 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Non-blocking styles

• Future always converted to SendHandler

• Server side

– SendHandler mapped to Servlet 3.1 style

• Client side

– SendHandler always converted to

CompletionHandler

37 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Blocking messages

• The WebSocket API

– Some messages use blocking IO

– Some messages use non-blocking IO

• The Servlet 3.1 API does not allow switching from

non-blocking to blocking

• Square peg, meet round hole

• Have to simulate blocking

38 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Blocking messages

void startMsgBlock(byte opCode, ByteBuffer payload,

 boolean last) throws IOException {

 FutureToSendHandler f2sh =

 new FutureToSendHandler();

 startMessage(opCode, payload, last, f2sh);

 try {

 long timeout = getBlockingSendTimeout();

 if (timeout == -1) f2sh.get();

 else f2sh.get(timeout, MILLISECONDS);

 } catch (…) {

 throw new IOException(e);

 }

}

39 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Blocking messages

• No API to define a timeout for blocking messages

– Specified via a user property on the session

– Container specific solution

• What happens under the hood?

– Data to write is written to the socket

– Remaining data is buffered

– Socket registered for write

– Callback when socket ready for write

– Repeat until buffer is empty

40 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Blocking messages

• How is the block implemented?

• Simple latch

– Create a latch when the write starts

– f2sh.get() calls latch#await()

– Container calls latch.countDown() when write is

complete

• This works for blocking writes on the application thread

• However…

41 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Blocking messages

• Servlet 3.1 (and earlier) is written based on the following

assumption:

– There is only ever one container thread accessing a

socket at any one time

• Tomcat enforces this with a lock

– Prevents all sorts of threading issues with async

processing

• This causes big problems for WebSocket

42 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Blocking messages

• Start with an established but idle WebSocket connection

• Poller detects data is available to read

• Poller passes socket to container thread for processing

• Container thread obtains the lock for working with the

socket

• Code path eventually reaches application code

• Application processes message

• Application replies with its own message using a

blocking write

43 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Blocking messages

• Message is too big for a single write

• Message is partially written

• Remaining message is buffered

• Socket is registered with Poller for write

• Container thread blocks on latch as message write is not

complete

• Poller detects data can be written

• Poller passes socket to container thread for processing

• Container thread blocks waiting for lock to allow it to

work with the socket

44 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Blocking messages

• Deadlock

• The thread that initiated the write has the lock for the

socket

• That thread is blocked waiting for the write to complete

• The thread that will allow the write to progress is blocked

waiting for the lock for the socket

45 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Blocking messages

• Servlet EG discussed several options

• Automatic blocking

– No call to isReady() results in a blocking read /

write

– Ends up in same deadlock situation

• WebConnection.start(Runnable)

– Clunky

– Purpose not immediately obvious

– Should work but was untested

46 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Blocking messages

• For connections using HTTP upgrade, allow concurrent

read and write

– No more than one read thread

– No more than one write thread

• Breaks the implied one thread per socket rule of the

Servlet API

• It was the solution I tried first

– It worked

– Some threading issues

47 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Generic types

public interface MessageHandler {

 interface Partial<T>

 extends MessageHandler {

 void onMessage(T messagePart,

 boolean last);

 }

interface Whole<T> extends MessageHandler {

 void onMessage(T message);

 }

}

48 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Generic types

• The container has to figure out what T is at runtime

• Has to do the same for Encoder implementations

• Foo implements MessageHandler.Whole<String>

– Fairly simple

• Bar extends Foo

– Still fairly simple

• It can get more complicated…

49 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: Generic types

• A extends B<Boolean,String>

• B<Y,X> extends C<X,Y>

• C<X,Y> implements

 MessageHandler.Whole<X>, Other<Y>

• Generic information is available at runtime

• Have to do a little digging to find it

– Class#getGenericInterfaces()

– ParameterizedType#getRawType()

– ParameterizedType#getActualTypeArguments()

• org.apache.tomcat.websocket.Util#getGenericType()

50 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: UTF-8

• WebSocket text messages are always UTF-8 encoded

• Tomcat uses the Autobahn test suite to check for

RFC6455 compliance

• Autobahn includes a lot of tests for UTF-8 handling

– Autobahn has been incredibly useful

– Highly recommended for developers of WebSocket

clients or servers

• The UTF-8 decoder provided by the JRE triggers

Autobahn failures

• Wrote some test cases that identified further failures

51 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: UTF-8

• Issues with JRE provided UTF-8 decoder

– It accepts byte sequences that should be rejected

– It doesn’t fail fast on invalid sequences

– Not failing fast means the wrong number of invalid

bytes are detected

– Not failing fast means too many bytes (including valid

bytes) are incorrectly replaced with the replacement

character

• Writing your own UTF-8 decoder is non-trivial

52 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: UTF-8

• Apache Harmony to the rescue

• Took the UTF-8 decoder from Apache Harmony

• This also had some failures

• Modified the decoder to fix the issues

• Switched to this new decoder for all Tomcat code

including WebSocket

53 © Copyright 2013 Pivotal. All rights reserved.

Complicating factors: SSL

• AsynchronousSocketChannel is a good match for a

WebSocket client implementation

• No SSL support

• Searching for implementations to reuse didn’t find any

implementations

• Had to write one from scratch

– Based on Tomcat’s HTTP NIO connector SSL

implementation

54 © Copyright 2013 Pivotal. All rights reserved.

Summary

• WebSocket 1.0 has been implemented on Servlet 3.1

• Tomcat 8

– Also JSP 2.3 and EL 3.0

• There were some complications

• Had to ‘bend’ the Servlet specification to do it

• https://svn.apache.org/repos/asf/tomcat/trunk

55 © Copyright 2013 Pivotal. All rights reserved.

Questions?

56 © Copyright 2013 Pivotal. All rights reserved.

Thank You.

57 © Copyright 2013 Pivotal. All rights reserved.

A NEW PLATFORM FOR A NEW ERA

