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Intro to Load-Balancing Tomcat
with httpd and mod_jk

● Covering

– Load balancing

● Not covering

– Clustering*

* See Mark's 3-part presentation(s) today starting at 10:00 in this room



  

Tomcat

● Tomcat as a web server

– Capable
● HTTP, HTTPS, WebSocket, NIO
● Virtual hosting, CGI, URL-rewriting
● Authentication (RDBMS, LDAP, file)
● Styled directory listings
● Arbitrary data filtering

– Fast
● Static throughput can be comparable to httpd*

* See Jean-Frederic's presentation today at 15:15 in this room



  

Tomcat

● Tomcat as an application server

– Java servlets, JSPs

– Sky is the limit

Image credit: Stan Shebs CC BY-SA 3.0 via 
Wikimedia Commons



  

Tomcat

● Tomcat as an application server

– Java servlets, JSPs

– Sky is the limit*

* Okay, heap size is the limit

Image credit: Stan Shebs CC BY-SA 3.0 via 
Wikimedia Commons
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Scalability

● More memory

● More deployed applications

– without complex URLs

● Better fault-tolerance
– fail-over

● Easier maintenance

– bring-down a server without bringing down a service



  

Scalability



  

Load Balancing

● Client sees a single “service”

● “Server” is really an army of servers

● This army runs behind a façade: the load-balancer (lb)

● The load-balancer is also called a reverse proxy*

* Because forward proxy was already taken



  

Balancing versus Clustering

● Balancing is basic

– Route incoming requests

– Pushes bytes around

● Clustering* is complex

– Relies on balancing as a building block

– Configuration

– Communication

– Replication

* See Mark's 3-part presentation(s) today starting at 10:00 in this room



  

Reverse Proxying

● Necessary components

1. Reverse proxy (or proxies) (lb)

2. Proxied / balanced back-end nodes (servers)

3. A protocol to connect the two
● HTTP(S)/1.1
● AJP/13 (Apache JServ Protocol 1.3)



  

Reverse Proxying

● Choice of load-balancers

– Hardware
● F5/BIGIP, Cisco, Barracuda, etc.

– Software
● Apache httpd
● lighttpd
● NGINX
● Squid
● Varnish



  

Proxy Protocols

● HTTP

– Easy to configure

– Easy to debug

– Supports TLS delivery (HTTPS)

– Wide support



  

Proxy Protocols

● Apache JServ Protocol

– Binary protocol that tunnels HTTP

– Designed to forward SSL client state to the back-end node

– Uses mnemonics for often-used headers, etc. offers a kind of 
compression to improve performance

* http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html



  

Apache httpd

● Using HTTP

– mod_proxy_http

● Using AJP13

– mod_proxy_ajp

– mod_jk



  

Reverse Proxying



  

mod_jk

● Longer history than 
mod_proxy_ajp

● More expressive 
configuration, more 
options

● Default configuration 
does more

● Not a default module 
in any httpd version :(



  

Configuring mod_jk

● Workers

– Definition of a connection
● One worker per Tomcat instance

– Building block for other configuration

– Used to map requests to a particular place

● Mounts

– Associate a URL pattern with a worker



  

Quick mod_jk Configuration

● workers.properties
worker.list=myworker

worker.myworker.host=localhost

worker.myworker.port=8009

worker.myworker.type=ajp13

● httpd.conf
JkMount /examples/* myworker



  

Quick mod_jk Configuration

● Tomcat's conf/server.xml
<Connector port=”8009”

           protocol="AJP/1.3" />



  

Quick mod_jk Configuration

● Most of this is default configuration

– Tomcat's default server.xml
● AJP connector on port 8009

– mod_jk's default worker
● host=localhost
● port=8009
● type=ajp13



  

Quick mod_jk Configuration

● Point a client at http://host/examples/



  

Load-balancing examples

● Small changes to workers.properties
worker.list=lb

worker.lb.type=lb

worker.lb.balance_workers=myworker, other

worker.myworker.host=localhost

worker.myworker.port=8009

worker.myworker.type=ajp13

worker.other.host=otherhost

worker.other.port=8009

worker.other.type=ajp13



  

Load Balancing examples

● Small change to httpd.conf
JkMount /examples/* lb



  

Load-balancing examples

● Deploy examples webapp to “other” server

● All is well



  

Load-balancing examples

● Deploy examples webapp to “other” server

● All is well

… until you try to run the “Sessions Example”



  

Session Tracking

● Sessions

– Maintained using cookie or URL parameter

– Tied to a single back-end node

– Load-balancer needs to know which node to use



  

Session Tracking Techniques

● No session tracking

– Complete chaos

● Allow nodes to negotiate

– Clustering



  

Session Tracking Techniques

● “Sticky” sessions

– In-memory registry
● Doesn't scale well
● Can get out of sync

– Another cookie
● NODE=node01
● Can get out of sync

– Encode node identity in the session id



  

Sticky Sessions in mod_jk

● Sticky sessions are the mod_jk default!
● Must tell Tomcat about it's role

– Small change to Tomcat configuration

<Engine name="Catalina"

        defaultHost="localhost"

        jvmRoute=”myworker”>

– Configuration for second node:
<Engine name="Catalina"

        defaultHost="localhost"

        jvmRoute=”other”>



  

Load Balancing examples

● Sessions example is feeling much better, now



  

Load Balancing with mod_jk

● Define workers

– Individual or balanced

● Map URLs to workers

– Lots of options

● Configure Tomcat

– Don't forget to set jvmRoute if you'll be using (sticky) sessions



  

Monitoring mod_jk

● How is mod_jk feeling*?

● Are the workers all working?

● What does the load distribution look like?

● Are there any failures?

* Come to my presentation at 14:15 today for monitoring Tomcat itself.



  

Monitoring mod_jk

● How is mod_jk feeling?

● Are the workers all working?

● What does the load distribution look like?

● Are there any failures?

mod_jk has a special status worker



  

Monitoring mod_jk

● Configure the status worker
worker.list=status*

worker.status.type=status

● Mount the worker on a URL
JkMount /jk-status status

* The worker.list directive can be specified multiple times



  

Monitoring mod_jk



  

Monitoring mod_jk

● Also snoop on load-balancer members



  

Node Maintenance

● Crash

● Application upgrade

● System / package upgrade

● DR testing



  

Node Maintenance
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Node Maintenance - Disable



  

Node Maintenance - Drain

● New clients are sent to active nodes

● Existing client sessions continue to be valid

● Disabled node continues to serve these clients

● Usage profile means draining can take a long time



  

Node Maintenance - Drain

● Some clients keep coming back

● Session tracking strategy strikes again!

– Client is assigned to myworker node; session times out

– Node myworker is disabled

– Client does not close browser

– Client visits your service with old session cookie value

– Cookie still ties the client to the disabled server

– mod_jk doesn't know any better



  

Node Maintenance - Drain

● How do we get these clients to stop coming back?



  

Node Maintenance - Drain

● How do we get these clients to stop coming back?

● LoadBalancerDrainingFilter / LoadBalancerDrainingValve
<filter>

  <filter-name>loadBalancerDrainingFilter</filter-name>

  <filter-class>LoadBalancerDrainingFilter</filter-class>

</filter>

<filter-mapping>

  <filter-name>loadBalancerDrainingFilter</filter-name>

  <url-pattern>/*</url-pattern>

</filter-mapping>



  

Node Maintenance - Drain

● Client sends session cookie to server
● mod_jk respects session hint, sends worker attribute ACTIVATION=DIS
● LoadBalancerDrainingFilter

– sees invalid session

– sees ACTIVATION=DIS

– strips jsessionid,

– expires cookie

– redirects client to same URL

– mod_jk chooses an active node



  

Node Maintenance - Stop



  

Node Maintenance - Test

● Test the upgraded web application

● How do we access the target node?

– Bypass load balancer (mynode.domain.ext)

– Through load balancer (www.domain.ext)
● http://www.domain.ext/examples/;jsessionid=00.myworker

● Target node is disabled



  

Node Maintenance - Test

<filter>

  [...]

  <init-param>

    <param-name>ignore-cookie-name</param-name>

    <param-value>lbdf.ignore</param-value>

  </init-param>

  <init-param>

    <param-name>ignore-cookie-value</param-name>

    <param-value>true</param-value>

  </init-param>

</filter>



  

Node Maintenance - Test

● Use browser dev tools to create cookie

– lbdf.ignore=true

● mod_jk respects session hint

● LoadBalancerDrainingFilter
– sees invalid session

– sees ACTIVATION=DIS

– sees valid “ignore” cookie

– allows access to the disabled node



  

Node Maintenance - Enable



  

Reverse Proxying



  

Multiple Web Servers

● N web servers

– T web server threads (or processes)

● M Tomcat servers

● Web servers must be prepared
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Multiple Web Servers

● N web servers

– T web server threads (or processes)

● M Tomcat servers

● Web servers must be prepared
– T * M connections

● Tomcat nodes must be prepared

– N * T connections

● 3 * 256 = 768 connections



  

Multiple Web Servers

● Resource exhaustion

– Threads (processes)

– File handles



  

Multiple Web Servers

● Resource exhaustion

– Threads (processes)

– File handles

● Resource Management

– httpd
● Use event/worker/NT MPM with limited mod_jk connection pool size
● Pre-fork will always use MaxClients[2.2]/MaxRequestWorkers[2.4]

– Tomcat
● Use the Tomcat NIO or NIO2 connector



  

Node Maintenance - Disable



  

Node Maintenance - Disable



  

Node Maintenance - Disable



  

Node Maintenance - Disable



  

Node Maintenance - Disable

Does Not Scale



  

Node Maintenance - Disable

● Script this!

$ mod_jk.py -b lb -w myworker -u activation=DIS

+ Updating localhost

  Updating load-balancer lb worker myworker

+ localhost (mod_jk/1.2.41-dev)

 - lb

   - myworker

       activation=DIS

mod_jk.py can be found at https://wiki.apache.org/tomcat/tools/mod_jk.py



  

Node Maintenance - Disable

● Multi-web server example

    $ mod_jk.py -b lb -w myworker -u activation=ACT

+ Updating web-1

  Updating load-balancer lb worker myworker

+ Updating web-2

  Updating load-balancer lb worker myworker

+ Updating web-3

  Updating load-balancer lb worker myworker

[...]



  

Resources

● LoadBalancerDrainingFilter

http://people.apache.org/~schultz/lbdf/

● LoadBalancerDrainingValve

– Landing in trunk, soon

● mod_jk.py

https://wiki.apache.org/tomcat/tools/mod_jk.py



  

Questions

* Slides available on the Linux Foundation / ApacheCon2015  web site and at 
http://people.apache.org/~schultz/ApacheCon NA 2015/Load-balancing with mod_jk.odp
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