

Intro to Load-Balancing Tomcat
with httpd and mod_jk

Christopher Schultz
Chief Technology Officer
Total Child Health, Inc.

* Slides available on the Linux Foundation / ApacheCon2015 web site and at
http://people.apache.org/~schultz/ApacheCon NA 2015/Load-balancing with mod_jk.odp

Intro to Load-Balancing Tomcat
with httpd and mod_jk

● Covering

– Load balancing

● Not covering

– Clustering*

* See Mark's 3-part presentation(s) today starting at 10:00 in this room

Tomcat

● Tomcat as a web server

– Capable
● HTTP, HTTPS, WebSocket, NIO
● Virtual hosting, CGI, URL-rewriting
● Authentication (RDBMS, LDAP, file)
● Styled directory listings
● Arbitrary data filtering

– Fast
● Static throughput can be comparable to httpd*

* See Jean-Frederic's presentation today at 15:15 in this room

Tomcat

● Tomcat as an application server

– Java servlets, JSPs

– Sky is the limit

Image credit: Stan Shebs CC BY-SA 3.0 via
Wikimedia Commons

Tomcat

● Tomcat as an application server

– Java servlets, JSPs

– Sky is the limit*

* Okay, heap size is the limit

Image credit: Stan Shebs CC BY-SA 3.0 via
Wikimedia Commons

Scalability

● More memory

Scalability

● More memory

● More deployed applications

– without complex URLs

Scalability

● More memory

● More deployed applications

– without complex URLs

● Better fault-tolerance
– fail-over

Scalability

● More memory

● More deployed applications

– without complex URLs

● Better fault-tolerance
– fail-over

● Easier maintenance

– bring-down a server without bringing down a service

Scalability

Load Balancing

● Client sees a single “service”

● “Server” is really an army of servers

● This army runs behind a façade: the load-balancer (lb)

● The load-balancer is also called a reverse proxy*

* Because forward proxy was already taken

Balancing versus Clustering

● Balancing is basic

– Route incoming requests

– Pushes bytes around

● Clustering* is complex

– Relies on balancing as a building block

– Configuration

– Communication

– Replication

* See Mark's 3-part presentation(s) today starting at 10:00 in this room

Reverse Proxying

● Necessary components

1. Reverse proxy (or proxies) (lb)

2. Proxied / balanced back-end nodes (servers)

3. A protocol to connect the two
● HTTP(S)/1.1
● AJP/13 (Apache JServ Protocol 1.3)

Reverse Proxying

● Choice of load-balancers

– Hardware
● F5/BIGIP, Cisco, Barracuda, etc.

– Software
● Apache httpd
● lighttpd
● NGINX
● Squid
● Varnish

Proxy Protocols

● HTTP

– Easy to configure

– Easy to debug

– Supports TLS delivery (HTTPS)

– Wide support

Proxy Protocols

● Apache JServ Protocol

– Binary protocol that tunnels HTTP

– Designed to forward SSL client state to the back-end node

– Uses mnemonics for often-used headers, etc. offers a kind of
compression to improve performance

* http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html

Apache httpd

● Using HTTP

– mod_proxy_http

● Using AJP13

– mod_proxy_ajp

– mod_jk

Reverse Proxying

mod_jk

● Longer history than
mod_proxy_ajp

● More expressive
configuration, more
options

● Default configuration
does more

● Not a default module
in any httpd version :(

Configuring mod_jk

● Workers

– Definition of a connection
● One worker per Tomcat instance

– Building block for other configuration

– Used to map requests to a particular place

● Mounts

– Associate a URL pattern with a worker

Quick mod_jk Configuration

● workers.properties
worker.list=myworker

worker.myworker.host=localhost

worker.myworker.port=8009

worker.myworker.type=ajp13

● httpd.conf
JkMount /examples/* myworker

Quick mod_jk Configuration

● Tomcat's conf/server.xml
<Connector port=”8009”

 protocol="AJP/1.3" />

Quick mod_jk Configuration

● Most of this is default configuration

– Tomcat's default server.xml
● AJP connector on port 8009

– mod_jk's default worker
● host=localhost
● port=8009
● type=ajp13

Quick mod_jk Configuration

● Point a client at http://host/examples/

Load-balancing examples

● Small changes to workers.properties
worker.list=lb

worker.lb.type=lb

worker.lb.balance_workers=myworker, other

worker.myworker.host=localhost

worker.myworker.port=8009

worker.myworker.type=ajp13

worker.other.host=otherhost

worker.other.port=8009

worker.other.type=ajp13

Load Balancing examples

● Small change to httpd.conf
JkMount /examples/* lb

Load-balancing examples

● Deploy examples webapp to “other” server

● All is well

Load-balancing examples

● Deploy examples webapp to “other” server

● All is well

… until you try to run the “Sessions Example”

Session Tracking

● Sessions

– Maintained using cookie or URL parameter

– Tied to a single back-end node

– Load-balancer needs to know which node to use

Session Tracking Techniques

● No session tracking

– Complete chaos

● Allow nodes to negotiate

– Clustering

Session Tracking Techniques

● “Sticky” sessions

– In-memory registry
● Doesn't scale well
● Can get out of sync

– Another cookie
● NODE=node01
● Can get out of sync

– Encode node identity in the session id

Sticky Sessions in mod_jk

● Sticky sessions are the mod_jk default!
● Must tell Tomcat about it's role

– Small change to Tomcat configuration

<Engine name="Catalina"

 defaultHost="localhost"

 jvmRoute=”myworker”>

– Configuration for second node:
<Engine name="Catalina"

 defaultHost="localhost"

 jvmRoute=”other”>

Load Balancing examples

● Sessions example is feeling much better, now

Load Balancing with mod_jk

● Define workers

– Individual or balanced

● Map URLs to workers

– Lots of options

● Configure Tomcat

– Don't forget to set jvmRoute if you'll be using (sticky) sessions

Monitoring mod_jk

● How is mod_jk feeling*?

● Are the workers all working?

● What does the load distribution look like?

● Are there any failures?

* Come to my presentation at 14:15 today for monitoring Tomcat itself.

Monitoring mod_jk

● How is mod_jk feeling?

● Are the workers all working?

● What does the load distribution look like?

● Are there any failures?

mod_jk has a special status worker

Monitoring mod_jk

● Configure the status worker
worker.list=status*

worker.status.type=status

● Mount the worker on a URL
JkMount /jk-status status

* The worker.list directive can be specified multiple times

Monitoring mod_jk

Monitoring mod_jk

● Also snoop on load-balancer members

Node Maintenance

● Crash

● Application upgrade

● System / package upgrade

● DR testing

Node Maintenance

00:00:00 00:14:24 00:28:48 00:43:12 00:57:36 01:12:00 01:26:24 01:40:48 01:55:12
0

100
200
300
400
500
600

S
es

si
on

 C
ou

nt

Disable

Drain

Stop

Activate

Test

Perform Maintenance

Node Maintenance - Disable

Node Maintenance - Drain

● New clients are sent to active nodes

● Existing client sessions continue to be valid

● Disabled node continues to serve these clients

● Usage profile means draining can take a long time

Node Maintenance - Drain

● Some clients keep coming back

● Session tracking strategy strikes again!

– Client is assigned to myworker node; session times out

– Node myworker is disabled

– Client does not close browser

– Client visits your service with old session cookie value

– Cookie still ties the client to the disabled server

– mod_jk doesn't know any better

Node Maintenance - Drain

● How do we get these clients to stop coming back?

Node Maintenance - Drain

● How do we get these clients to stop coming back?

● LoadBalancerDrainingFilter / LoadBalancerDrainingValve
<filter>

 <filter-name>loadBalancerDrainingFilter</filter-name>

 <filter-class>LoadBalancerDrainingFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>loadBalancerDrainingFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Node Maintenance - Drain

● Client sends session cookie to server
● mod_jk respects session hint, sends worker attribute ACTIVATION=DIS
● LoadBalancerDrainingFilter

– sees invalid session

– sees ACTIVATION=DIS

– strips jsessionid,

– expires cookie

– redirects client to same URL

– mod_jk chooses an active node

Node Maintenance - Stop

Node Maintenance - Test

● Test the upgraded web application

● How do we access the target node?

– Bypass load balancer (mynode.domain.ext)

– Through load balancer (www.domain.ext)
● http://www.domain.ext/examples/;jsessionid=00.myworker

● Target node is disabled

Node Maintenance - Test

<filter>

 [...]

 <init-param>

 <param-name>ignore-cookie-name</param-name>

 <param-value>lbdf.ignore</param-value>

 </init-param>

 <init-param>

 <param-name>ignore-cookie-value</param-name>

 <param-value>true</param-value>

 </init-param>

</filter>

Node Maintenance - Test

● Use browser dev tools to create cookie

– lbdf.ignore=true

● mod_jk respects session hint

● LoadBalancerDrainingFilter
– sees invalid session

– sees ACTIVATION=DIS

– sees valid “ignore” cookie

– allows access to the disabled node

Node Maintenance - Enable

Reverse Proxying

Multiple Web Servers

● N web servers

– T web server threads (or processes)

● M Tomcat servers

● Web servers must be prepared

Multiple Web Servers

● N web servers

– T web server threads (or processes)

● M Tomcat servers

● Web servers must be prepared
– T * M connections

Multiple Web Servers

● N web servers

– T web server threads (or processes)

● M Tomcat servers

● Web servers must be prepared
– T * M connections

● Tomcat nodes must be prepared

Multiple Web Servers

● N web servers

– T web server threads (or processes)

● M Tomcat servers

● Web servers must be prepared
– T * M connections

● Tomcat nodes must be prepared

– N * T connections

● 3 * 256 = 768 connections

Multiple Web Servers

● Resource exhaustion

– Threads (processes)

– File handles

Multiple Web Servers

● Resource exhaustion

– Threads (processes)

– File handles

● Resource Management

– httpd
● Use event/worker/NT MPM with limited mod_jk connection pool size
● Pre-fork will always use MaxClients[2.2]/MaxRequestWorkers[2.4]

– Tomcat
● Use the Tomcat NIO or NIO2 connector

Node Maintenance - Disable

Node Maintenance - Disable

Node Maintenance - Disable

Node Maintenance - Disable

Node Maintenance - Disable

Does Not Scale

Node Maintenance - Disable

● Script this!

$ mod_jk.py -b lb -w myworker -u activation=DIS

+ Updating localhost

 Updating load-balancer lb worker myworker

+ localhost (mod_jk/1.2.41-dev)

 - lb

 - myworker

 activation=DIS

mod_jk.py can be found at https://wiki.apache.org/tomcat/tools/mod_jk.py

Node Maintenance - Disable

● Multi-web server example

 $ mod_jk.py -b lb -w myworker -u activation=ACT

+ Updating web-1

 Updating load-balancer lb worker myworker

+ Updating web-2

 Updating load-balancer lb worker myworker

+ Updating web-3

 Updating load-balancer lb worker myworker

[...]

Resources

● LoadBalancerDrainingFilter

http://people.apache.org/~schultz/lbdf/

● LoadBalancerDrainingValve

– Landing in trunk, soon

● mod_jk.py

https://wiki.apache.org/tomcat/tools/mod_jk.py

Questions

* Slides available on the Linux Foundation / ApacheCon2015 web site and at
http://people.apache.org/~schultz/ApacheCon NA 2015/Load-balancing with mod_jk.odp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

