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● Reverse Proxies
● Load-balancing
● Clustering
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Reverse Proxies
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Reverse Proxy

bz.apache.org
httpd instance

Bugzilla (main)
bz.apache.org/bugzilla
httpd instance

bz.apache.org
httpd instance

Bugzilla (AOO)
bz.apache.org/ooo
httpd instance

Bugzilla (SpamAssassin)
bz.apache.org/SpamAssassin
httpd instance
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Reverse Proxy

● Looks like a single host to the clients
● Usually multiple hosts
● Different services on different hosts

– May also be geographically distributed

● Can be used to add features
– e.g. Use httpd as a reverse proxy for Tomcat to add Windows 

authentication (no longer necessary)
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Agenda: Reverse Proxies

● Protocol selection
● httpd module selection
● Tomcat connector implementation selection
● Troubleshooting
● Questions
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Protocol Selection

● Two options
– AJP

– HTTP

● Best choice depends on circumstances
– No clear winner

● Both support persistent connections
– On a fast LAN or the same machine this makes little difference
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Protocol Selection: AJP

● Not a binary protocol
– Common headers and values encoded

– Other values in plain text

– Request and response bodies in plain text

● Request headers must fit in a single AJP message
– Default 8192

– Max 65536
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Protocol Selection: AJP

● Supports passing of TLS termination information

● Does not directly support encryption
– IPSec, VPN, SSH tunnel, etc.

● Supports ping to validate connection status
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Protocol Selection: HTTP

● Clear text protocol
– Easy to read

● No limit on request header size

● No dedicated ping
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Protocol Selection: HTTP

● Does not directly support providing TLS termination information
– Can be added by httpd using custom headers

– Can be processed by Tomcat using the SSLValve

● Supports encryption via HTTPS
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Protocol Selection: AJP vs HTTP

● If terminating TLS at httpd and you need TLS the information
– Use AJP

● If you need to encrypt the httpd to Tomcat channel
– Use HTTP

● If you need both
– Use HTTP
– It is usually easier to pass TLS info over HTTP than it is to encrypt AJP

● In you need neither
– Pick the one you are familiar with – debugging will be easier
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httpd Module Selection

● Avoid
– mod_jk2

– mod_jserv

– mod_webapp

– anything else not explicitly mention below

● Consider
– mod_jk

– mod_proxy

– (mod_rewrite)
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httpd Module Selection: mod_rewrite

● You can replace most of httpd.conf with mod_rewrite directives
● That doesn’t mean that you should
● It is generally more efficient to use the dedicated directive
● There are times (complex load balancing rules) where I’ve used 

mod_rewrite
● mod_jk and mod_proxy can route based on environment variables
● Use mod_rewrite and/or mod_setenvif to determine the routing info
● Set the routing configuration with mod_jk / mod_proxy
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httpd Module Selection: mod_jk

● Only supports AJP
● Developed by the Tomcat committers
● Non-httpd style configuration
● Binaries only provided for Windows
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httpd Module Selection: mod_jk

● Doesn’t directly support URL re-writing
● Make sure you are using the latest documentation
● http://tomcat.apache.org/connectors-doc/
● The status worker can be used for monitoring and management
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httpd Module Selection: mod_proxy

● Supports AJP and HTTP
● Included as standard with httpd
● Uses httpd style configuration
● Built-in support for URL re-writing (not all use cases)
● Binaries provided for most platforms
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httpd Module Selection: mod_jk vs mod_proxy

● Mapping complexity no longer a differentiator
● Not on Windows and don’t want to have to compile the module

– mod_proxy

● Already using one of these
– Carry on. The costs of changing will probably out-weight the benefits

● If you have a free choice
– Use mod_proxy, the configuration style will be more familiar
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Tomcat Connector Selection

● BIO
– Default in Tomcat 7

– Removed from Tomcat 8.5 onwards

– Java blocking I/O

● NIO
– Default from Tomcat 8

– Java non-blocking I/O
● Next request, HTTP headers, TLS handshake
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Tomcat Connector Selection

● NIO2
– Introduced in Tomcat 8

– Java non-blocking I/O
● Next request, HTTP headers, TLS handshake

● APR/Native
– JNI library built on APR non-blocking I/O

● Next request, HTTP headers (8.5.x onwards)
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Tomcat Connector Selection

● All connectors block (or simulate blocking) during
– Request body read

– Response body write

● TLS
– BIO, NIO & NIO2 uses JSSE
– NIO & NIO2 can use OpenSSL from 8.5.x
– APR/native uses OpenSSL

● OpenSSL is significantly faster
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Tomcat Connector Selection

● Sendfile
– NIO, NIO2 and APR/native support sendfile

● Comet
– Removed in 8.5.x onwards

– Supported by NIO, NIO2 and APR/native

● WebSocket
– All connectors support WebSocket

– httpd’s reverse proxy support doesn’t include HTTP upgrade

– BIO fakes non-blocking support
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Tomcat Connector Selection

● If you use TLS
– OpenSSL based connector

● Stability
– NIO

● Scalability
– Not BIO

● NIO with OpenSSL is good default choice
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Troubleshooting: Thread Exhaustion

● httpd prefork MPM
– 1 thread per process
– MaxRequestWorkers processes
– Maximum of 1 * MaxRequestWorkers threads

● httpd worker MPM
– ServerLimit processes
– ThreadsPerChild threads for each process
– Maximum of ServerLimit * ThreadsPerChild threads

● Thread == concurrent request
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Troubleshooting: Thread Exhaustion

● Each httpd thread may create a connection to each Tomcat 
instance

● Therefore, 2 httpd instances each with 400 threads
– Maximum of 800 connections to each Tomcat instance

– The connections are NOT distributed between the Tomcat instances

– Connections are persistent by default
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Troubleshooting: Thread Exhaustion

● Connections may have low utilization
● BIO requires a thread per connection
● BIO connector may run out of threads even when Tomcat is 

almost idle
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Troubleshooting: Thread Exhaustion: Solutions

● Use NIO connector as it is non-blocking between requests
● Don’t use persistent connections between httpd and Tomcat
● Ensure each Tomcat instance has >= threads than total httpd 

threads
● Configure timeouts

– I have seen cases where httpd tried to use a timed out connection

● Use distance to create preferred groups
● Example: ASF Jira
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Troubleshooting: Broken Links

● Easiest way to create a lot of hassle for yourself
– ProxyPass /foo http://localhost:10180/bar

● Easiest way to avoid the hassle
– ProxyPass /foo http://localhost:10180/foo

● Don’t change the context path
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Troubleshooting: Broken Links

● Often marketing wants http://buzzword.com rather than 
http://buzzword.com/app

● Consider a simple redirect from / to /app
– /app becomes visible to end users once they use the app

– Much easier to implement and maintain

● Deploy your application as ROOT
– Use ROOT##label if you need to add a version number or similar
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Troubleshooting: Broken Links

● Redirects
– Redirect to wrong path

● Cookie paths
– Cookies are not returned by client

● Links
– Created for wrong URL

● Custom headers (e.g. Spring MVC)
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Troubleshooting: Broken Links: Solutions

● Fixing redirects
– Don’t change the context path

– ProxyPathReverse will fix some but not all HTTP headers

● Fixing cookie paths
– Don’t change the context path

– ProxyPassReverseCookiePath /bar /foo



TM

  

Troubleshooting: Broken Links: Solutions

● Fixing links
– Don’t change the context path

– mod_sed, mod_substitute, mod_proxy_html
– Fragile solution and a significant maintenance overhead

● Fixing custom headers
– Don’t change the context path
– mod_headers
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Troubleshooting: Security Issues

● Need to be careful when terminating HTTPS at httpd
● Tomcat needs to know if request was received over HTTPS

– Sessions must not transition from HTTPS to HTTP

– Cookies created over HTTPS must be marked as secure

● mod_jk and mod_proxy_ajp just handle this
● mod_proxy_http does not
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Troubleshooting: Security Issues: Solutions

● Custom headers and the RemoteIpValve
● Two HTTP connectors

– HTTP traffic proxied to connector with secure=“false”

– HTTPS traffic proxied to connector with secure=“true”
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Troubleshooting: Miscellaneaous

● Virtual host selection
– ProxyPreserveHost on

● Client IP based security
– RemoteIpValve
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Load-balancing
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Reverse Proxy

bz.apache.org
httpd instance

Bugzilla (main)
bz.apache.org/bugzilla
httpd instance

bz.apache.org
httpd instance

Bugzilla (AOO)
bz.apache.org/ooo
httpd instance

Bugzilla (SpamAssassin)
bz.apache.org/SpamAssassin
httpd instance
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Load-balancing

www.apache.org
DNS round robin

www.eu.apache.org
httpd instance

tlp-eu-mid.apache.org
httpd instance

www.us.apache.org
httpd instance
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Load-balancing

● Looks like a single host to the clients
● Multiple hosts
● Each host is the same
● Each host is independent

– No shared state between the hosts

– May share common services (e.g. authentication, database)

● Node failure may be visible to users
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Load-balancing

● Lots of options for distributing the load
● Hardware load-balancer
● Round-robin DNS
● Software load-balancer

– httpd

– pen

● geoip
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Agenda: Load-balancing

● Terminology
● Request distribution
● Managing state
● Fail-over
● Questions
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Terminology

● Sticky sessions
● Without clustering, session is created only on node that handled 

request
● On next request, the load-balancer could send user to a 

different node where the session doesn’t exist
● Sticky sessions is a mechanism (there are several) that ensures 

the user returns to the node holding their session
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Request Distribution

● Many ways to select node to handle request
● mod_proxy

– Number of requests

– Number of bytes returned

– Number of current requests

● mod_jk
– As mod_proxy plus
– Number of sessions (estimate)
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Request Distribution

● Client IP
– Last octet

● Account number
– Last digit 0-3, 4-6, 7-9

● Customer type
– More important customers get priority
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Managing State

● Stateless applications are the simple solution
● Application state

– State includes authentication

● Options
– HTTP session

– Database

– Request parameters

● Load-balancing is impacted by HTTP state
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Managing State

● Sticky sessions are used for HTTP State
● Session ID

– Something in the session ID identifies the correct node

– Users could change this

● Dedicated cookie
– Users could change this

● Property of client such as IP
– Beware of ISP that use forward proxies
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Managing State

● Application property
– Account number

– Account type

● Often overlaps with load-balancing algorithm
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Fail-over

● Load-balancer needs to know the state of the nodes
● Nodes need to taken off-line for maintenance

– Known in advance

– Several options

● Nodes will fail
– Not (usually) predictable

– Need to be able to detect dynamically

● What is the impact on users?
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Fail-over: Maintenance

●  More transparent to users means
– More complex configuration

– Process takes longer

● Need to drain node of users
– How long can an HTTP session last?

– At what point do you stop the node anyway?

● Can Tomcat’s parallel deployment feature help?
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Fail-over: Unexpected

● Typically there is no separate management channel between 
Tomcat instances and load-balancer
– There is with mod_cluster from RedHat

● Need to detect failed nodes so fail-over can happen as early as 
possible
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Fail-over: Unexpected

● Can use a ‘failed’ request to detect a failed node
● Is a 500 response because the server crashed or because of an 

application bug?
● Is a time-out because the server crashed or because it is just a 

long running request?
● Applications that can have long running requests take at least 

that long to detect failures.
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Fail-over: Unexpected

● Monitoring user initiated requests to detect node failure is fragile
● Load-balancer triggered request to known, working, ‘simple’ 

page
– More reliable

– Still an HTTP request with the associated overhead

● Protocol pings are even faster
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Clustering
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Reverse Proxy

bz.apache.org
httpd instance

Bugzilla (main)
bz.apache.org/bugzilla
httpd instance

bz.apache.org
httpd instance

Bugzilla (AOO)
bz.apache.org/ooo
httpd instance

Bugzilla (SpamAssassin)
bz.apache.org/SpamAssassin
httpd instance
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Load-balancing

www.apache.org
DNS round robin

www.eu..apache.org
httpd instance

tlp-eu-mid.apache.org
httpd instance

www.us.apache.org
httpd instance
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Clustering

Load-balancer

Instance01

Instance02

Instance03

Replicated
 Session

State
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Clustering

● Load-balancing plus
● Node failure is (mostly) transparent to users
● This transparency comes at a (usually significant) cost



TM

  

Agenda: Clustering

● When to cluster
● Clustering components
● Configuration choices
● Debugging
● Questions
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When to cluster?

● Ideally, never
– Adds configuration complexity

– Requires additional processing
– Debugging is lot harder

● What do you really need?
– Load-balancing plus sticky sessions
– If a node fails, sessions will be lost

● Clustering should be the last resort
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Components

Manager

Channel

Valves DeployerListeners

Membership

Receiver

Sender

Interceptors

Cluster



TM

  

Components

● Cluster
– Container for all cluster related configuration

– May be placed within Engine or Host

● Manager
– Controls how data is replicated between nodes

● Channel
– Communication between cluster nodes



TM

  

Components

● Membership
– Tracks which nodes joining and leaving the cluster

● Sender
– Sends cluster messages to other nodes

● Receiver
– Receives messages from other nodes

● Interceptors
– Valves for cluster messages
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Components

● Listeners
– Receive notifications of cluster messages

– Managers support LifecycleListener
– Standard session listeners remain available

● Valves
– Inserted into the request processing pipeline

● Deployer
– Cluster wide deployment of web applications
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Manager Selection: Delta Manager

● Default
● Replicates every change to every node

– Maximum reliability

● Network traffic proportional to the square of the number of 
nodes
– Doesn’t scale to large numbers of nodes

● Fail-over can be to any node
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Manager Selection: Backup Manager

● Sessions have a primary node and a backup node
– Need to use sticky sessions

● Backup node selected on a round-robin basis from all other nodes
● There is NOT a single backup node
● Every node knows the primary node and backup node for every 

session
● Network traffic proportional to the number of nodes
● Failover is more complicated
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Backup Manager Fail-over
Node A

Primary Sessions:
30*A

Backup sessions:
10*B’, 10*C’, 10*D’

Node D
Primary Sessions:

30*D
Backup sessions:
10*A’, 10*B’, 10*C’

Node B
Primary Sessions:

30*B
Backup sessions:
10*A’, 10*C’, 10*D’

Node C
Primary Sessions:

30*C
Backup sessions:
10*A’, 10*B’, 10*D’
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Backup Manager Failover
Node A

Primary Sessions:
30*A

Backup sessions:
10*B’, 10*C’, 10*D’

Node D
Primary Sessions:

30*D
Backup sessions:
10*A’, 10*B’, 10*C’

Node B
Primary Sessions:

30*B
Backup sessions:
10*A’, 10*C’, 10*D’

Node C
Primary Sessions:

30*C
Backup sessions:
10*A’, 10*B’, 10*D’
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Backup Manager Fail-over

● Node D fails
● Sessions will be distributed to other nodes

– As soon as node failure is detected

● Backup node becomes the primary
● A new backup node is selected
● Session is copied to new backup node
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Backup Manager Fail-over
Node A

Primary Sessions:
40*A

Backup sessions:
20*B’, 20*C’

Node B
Primary Sessions:

40*B
Backup sessions:

20*A’, 20*C’

Node C
Primary Sessions:

40*C
Backup sessions:

20*A’, 20*B’
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Backup Manager Fail-over

● Not quite that simple
● Load-balancer will redistribute sessions
● New primary chosen by load-balancer may not be the same as 

chosen by clustering
● More moving of primary (and possibly backup)
● End result is – on average – the same
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Membership

● Multicast membership
– Requires multicast to be enabled on the network

– Can be difficult to debug problems

– Scales more easily

● Static
– Simple to debug

– Adding nodes gets time consuming as cluster grows
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Send Options

● Delta manager
– channelSendOptions on Cluster

● Backup manager
– mapSendOptions on Manager

● Synchronous or asynchronous
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Send Options: Synchronous

● Request processing does not complete until session data has 
been sent

● What is meant by sent?
– On the TCP stack

– Received by the other node

– Processed by the other node

● Next request to a different node will see updated sessions
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Send Options: Asynchronous

● Request processing continues while session data is sent
● Next request to a different node may or may not see updated 

sessions

● Requires sticky sessions
● Fail-over may silently lose data
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Debugging: Cluster Configuration

● Need to know
– Session ID

– Current route

– Which node handled the request

● I use a simple JSP page that shows the above
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Debugging: Cluster Configuration

● Sanity check
– Is the route correct for the current node?

– Is load-balancing happening as expected?

– Is fail-over happening as expected?

● Keep in mind how reverse proxy / load-balancer handles failed 
nodes
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Debugging: Applications

● Just like trying to debug any other application problem
– But harder

● Can the issue be replicated in a non-clustered environment?
● Approach depends a lot on the application
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Debugging: Applications

● Network / failover issues
– Look at the access logs (need session IDs)

– Look at error logs

– May need to look at network traffic

● Application issues
– Logging, logging and more logging

– Need to be able to fine tune logging
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Questions
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Thank you
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