
TM

TomcatCon London 2017
Clustering

Mark Thomas

TM

Agenda

● Reverse Proxies
● Load-balancing
● Clustering

TM

Reverse Proxies

TM

Reverse Proxy

bz.apache.org
httpd instance

Bugzilla (main)
bz.apache.org/bugzilla
httpd instance

bz.apache.org
httpd instance

Bugzilla (AOO)
bz.apache.org/ooo
httpd instance

Bugzilla (SpamAssassin)
bz.apache.org/SpamAssassin
httpd instance

TM

Reverse Proxy

● Looks like a single host to the clients
● Usually multiple hosts
● Different services on different hosts

– May also be geographically distributed

● Can be used to add features
– e.g. Use httpd as a reverse proxy for Tomcat to add Windows

authentication (no longer necessary)

TM

Agenda: Reverse Proxies

● Protocol selection
● httpd module selection
● Tomcat connector implementation selection
● Troubleshooting
● Questions

TM

Protocol Selection

● Two options
– AJP

– HTTP

● Best choice depends on circumstances
– No clear winner

● Both support persistent connections
– On a fast LAN or the same machine this makes little difference

TM

Protocol Selection: AJP

● Not a binary protocol
– Common headers and values encoded

– Other values in plain text

– Request and response bodies in plain text

● Request headers must fit in a single AJP message
– Default 8192

– Max 65536

TM

Protocol Selection: AJP

● Supports passing of TLS termination information

● Does not directly support encryption
– IPSec, VPN, SSH tunnel, etc.

● Supports ping to validate connection status

TM

Protocol Selection: HTTP

● Clear text protocol
– Easy to read

● No limit on request header size

● No dedicated ping

TM

Protocol Selection: HTTP

● Does not directly support providing TLS termination information
– Can be added by httpd using custom headers

– Can be processed by Tomcat using the SSLValve

● Supports encryption via HTTPS

TM

Protocol Selection: AJP vs HTTP

● If terminating TLS at httpd and you need TLS the information
– Use AJP

● If you need to encrypt the httpd to Tomcat channel
– Use HTTP

● If you need both
– Use HTTP
– It is usually easier to pass TLS info over HTTP than it is to encrypt AJP

● In you need neither
– Pick the one you are familiar with – debugging will be easier

TM

httpd Module Selection

● Avoid
– mod_jk2

– mod_jserv

– mod_webapp

– anything else not explicitly mention below

● Consider
– mod_jk

– mod_proxy

– (mod_rewrite)

TM

httpd Module Selection: mod_rewrite

● You can replace most of httpd.conf with mod_rewrite directives
● That doesn’t mean that you should
● It is generally more efficient to use the dedicated directive
● There are times (complex load balancing rules) where I’ve used

mod_rewrite
● mod_jk and mod_proxy can route based on environment variables
● Use mod_rewrite and/or mod_setenvif to determine the routing info
● Set the routing configuration with mod_jk / mod_proxy

TM

httpd Module Selection: mod_jk

● Only supports AJP
● Developed by the Tomcat committers
● Non-httpd style configuration
● Binaries only provided for Windows

TM

httpd Module Selection: mod_jk

● Doesn’t directly support URL re-writing
● Make sure you are using the latest documentation
● http://tomcat.apache.org/connectors-doc/
● The status worker can be used for monitoring and management

TM

httpd Module Selection: mod_proxy

● Supports AJP and HTTP
● Included as standard with httpd
● Uses httpd style configuration
● Built-in support for URL re-writing (not all use cases)
● Binaries provided for most platforms

TM

httpd Module Selection: mod_jk vs mod_proxy

● Mapping complexity no longer a differentiator
● Not on Windows and don’t want to have to compile the module

– mod_proxy

● Already using one of these
– Carry on. The costs of changing will probably out-weight the benefits

● If you have a free choice
– Use mod_proxy, the configuration style will be more familiar

TM

Tomcat Connector Selection

● BIO
– Default in Tomcat 7

– Removed from Tomcat 8.5 onwards

– Java blocking I/O

● NIO
– Default from Tomcat 8

– Java non-blocking I/O
● Next request, HTTP headers, TLS handshake

TM

Tomcat Connector Selection

● NIO2
– Introduced in Tomcat 8

– Java non-blocking I/O
● Next request, HTTP headers, TLS handshake

● APR/Native
– JNI library built on APR non-blocking I/O

● Next request, HTTP headers (8.5.x onwards)

TM

Tomcat Connector Selection

● All connectors block (or simulate blocking) during
– Request body read

– Response body write

● TLS
– BIO, NIO & NIO2 uses JSSE
– NIO & NIO2 can use OpenSSL from 8.5.x
– APR/native uses OpenSSL

● OpenSSL is significantly faster

TM

Tomcat Connector Selection

● Sendfile
– NIO, NIO2 and APR/native support sendfile

● Comet
– Removed in 8.5.x onwards

– Supported by NIO, NIO2 and APR/native

● WebSocket
– All connectors support WebSocket

– httpd’s reverse proxy support doesn’t include HTTP upgrade

– BIO fakes non-blocking support

TM

Tomcat Connector Selection

● If you use TLS
– OpenSSL based connector

● Stability
– NIO

● Scalability
– Not BIO

● NIO with OpenSSL is good default choice

TM

Troubleshooting: Thread Exhaustion

● httpd prefork MPM
– 1 thread per process
– MaxRequestWorkers processes
– Maximum of 1 * MaxRequestWorkers threads

● httpd worker MPM
– ServerLimit processes
– ThreadsPerChild threads for each process
– Maximum of ServerLimit * ThreadsPerChild threads

● Thread == concurrent request

TM

Troubleshooting: Thread Exhaustion

● Each httpd thread may create a connection to each Tomcat
instance

● Therefore, 2 httpd instances each with 400 threads
– Maximum of 800 connections to each Tomcat instance

– The connections are NOT distributed between the Tomcat instances

– Connections are persistent by default

TM

Troubleshooting: Thread Exhaustion

● Connections may have low utilization
● BIO requires a thread per connection
● BIO connector may run out of threads even when Tomcat is

almost idle

TM

Troubleshooting: Thread Exhaustion: Solutions

● Use NIO connector as it is non-blocking between requests
● Don’t use persistent connections between httpd and Tomcat
● Ensure each Tomcat instance has >= threads than total httpd

threads
● Configure timeouts

– I have seen cases where httpd tried to use a timed out connection

● Use distance to create preferred groups
● Example: ASF Jira

TM

Troubleshooting: Broken Links

● Easiest way to create a lot of hassle for yourself
– ProxyPass /foo http://localhost:10180/bar

● Easiest way to avoid the hassle
– ProxyPass /foo http://localhost:10180/foo

● Don’t change the context path

TM

Troubleshooting: Broken Links

● Often marketing wants http://buzzword.com rather than
http://buzzword.com/app

● Consider a simple redirect from / to /app
– /app becomes visible to end users once they use the app

– Much easier to implement and maintain

● Deploy your application as ROOT
– Use ROOT##label if you need to add a version number or similar

TM

Troubleshooting: Broken Links

● Redirects
– Redirect to wrong path

● Cookie paths
– Cookies are not returned by client

● Links
– Created for wrong URL

● Custom headers (e.g. Spring MVC)

TM

Troubleshooting: Broken Links: Solutions

● Fixing redirects
– Don’t change the context path

– ProxyPathReverse will fix some but not all HTTP headers

● Fixing cookie paths
– Don’t change the context path

– ProxyPassReverseCookiePath /bar /foo

TM

Troubleshooting: Broken Links: Solutions

● Fixing links
– Don’t change the context path

– mod_sed, mod_substitute, mod_proxy_html
– Fragile solution and a significant maintenance overhead

● Fixing custom headers
– Don’t change the context path
– mod_headers

TM

Troubleshooting: Security Issues

● Need to be careful when terminating HTTPS at httpd
● Tomcat needs to know if request was received over HTTPS

– Sessions must not transition from HTTPS to HTTP

– Cookies created over HTTPS must be marked as secure

● mod_jk and mod_proxy_ajp just handle this
● mod_proxy_http does not

TM

Troubleshooting: Security Issues: Solutions

● Custom headers and the RemoteIpValve
● Two HTTP connectors

– HTTP traffic proxied to connector with secure=“false”

– HTTPS traffic proxied to connector with secure=“true”

TM

Troubleshooting: Miscellaneaous

● Virtual host selection
– ProxyPreserveHost on

● Client IP based security
– RemoteIpValve

TM

Load-balancing

TM

Reverse Proxy

bz.apache.org
httpd instance

Bugzilla (main)
bz.apache.org/bugzilla
httpd instance

bz.apache.org
httpd instance

Bugzilla (AOO)
bz.apache.org/ooo
httpd instance

Bugzilla (SpamAssassin)
bz.apache.org/SpamAssassin
httpd instance

TM

Load-balancing

www.apache.org
DNS round robin

www.eu.apache.org
httpd instance

tlp-eu-mid.apache.org
httpd instance

www.us.apache.org
httpd instance

TM

Load-balancing

● Looks like a single host to the clients
● Multiple hosts
● Each host is the same
● Each host is independent

– No shared state between the hosts

– May share common services (e.g. authentication, database)

● Node failure may be visible to users

TM

Load-balancing

● Lots of options for distributing the load
● Hardware load-balancer
● Round-robin DNS
● Software load-balancer

– httpd

– pen

● geoip

TM

Agenda: Load-balancing

● Terminology
● Request distribution
● Managing state
● Fail-over
● Questions

TM

Terminology

● Sticky sessions
● Without clustering, session is created only on node that handled

request
● On next request, the load-balancer could send user to a

different node where the session doesn’t exist
● Sticky sessions is a mechanism (there are several) that ensures

the user returns to the node holding their session

TM

Request Distribution

● Many ways to select node to handle request
● mod_proxy

– Number of requests

– Number of bytes returned

– Number of current requests

● mod_jk
– As mod_proxy plus
– Number of sessions (estimate)

TM

Request Distribution

● Client IP
– Last octet

● Account number
– Last digit 0-3, 4-6, 7-9

● Customer type
– More important customers get priority

TM

Managing State

● Stateless applications are the simple solution
● Application state

– State includes authentication

● Options
– HTTP session

– Database

– Request parameters

● Load-balancing is impacted by HTTP state

TM

Managing State

● Sticky sessions are used for HTTP State
● Session ID

– Something in the session ID identifies the correct node

– Users could change this

● Dedicated cookie
– Users could change this

● Property of client such as IP
– Beware of ISP that use forward proxies

TM

Managing State

● Application property
– Account number

– Account type

● Often overlaps with load-balancing algorithm

TM

Fail-over

● Load-balancer needs to know the state of the nodes
● Nodes need to taken off-line for maintenance

– Known in advance

– Several options

● Nodes will fail
– Not (usually) predictable

– Need to be able to detect dynamically

● What is the impact on users?

TM

Fail-over: Maintenance

● More transparent to users means
– More complex configuration

– Process takes longer

● Need to drain node of users
– How long can an HTTP session last?

– At what point do you stop the node anyway?

● Can Tomcat’s parallel deployment feature help?

TM

Fail-over: Unexpected

● Typically there is no separate management channel between
Tomcat instances and load-balancer
– There is with mod_cluster from RedHat

● Need to detect failed nodes so fail-over can happen as early as
possible

TM

Fail-over: Unexpected

● Can use a ‘failed’ request to detect a failed node
● Is a 500 response because the server crashed or because of an

application bug?
● Is a time-out because the server crashed or because it is just a

long running request?
● Applications that can have long running requests take at least

that long to detect failures.

TM

Fail-over: Unexpected

● Monitoring user initiated requests to detect node failure is fragile
● Load-balancer triggered request to known, working, ‘simple’

page
– More reliable

– Still an HTTP request with the associated overhead

● Protocol pings are even faster

TM

Clustering

TM

Reverse Proxy

bz.apache.org
httpd instance

Bugzilla (main)
bz.apache.org/bugzilla
httpd instance

bz.apache.org
httpd instance

Bugzilla (AOO)
bz.apache.org/ooo
httpd instance

Bugzilla (SpamAssassin)
bz.apache.org/SpamAssassin
httpd instance

TM

Load-balancing

www.apache.org
DNS round robin

www.eu..apache.org
httpd instance

tlp-eu-mid.apache.org
httpd instance

www.us.apache.org
httpd instance

TM

Clustering

Load-balancer

Instance01

Instance02

Instance03

Replicated
 Session

State

TM

Clustering

● Load-balancing plus
● Node failure is (mostly) transparent to users
● This transparency comes at a (usually significant) cost

TM

Agenda: Clustering

● When to cluster
● Clustering components
● Configuration choices
● Debugging
● Questions

TM

When to cluster?

● Ideally, never
– Adds configuration complexity

– Requires additional processing
– Debugging is lot harder

● What do you really need?
– Load-balancing plus sticky sessions
– If a node fails, sessions will be lost

● Clustering should be the last resort

TM

Components

Manager

Channel

Valves DeployerListeners

Membership

Receiver

Sender

Interceptors

Cluster

TM

Components

● Cluster
– Container for all cluster related configuration

– May be placed within Engine or Host

● Manager
– Controls how data is replicated between nodes

● Channel
– Communication between cluster nodes

TM

Components

● Membership
– Tracks which nodes joining and leaving the cluster

● Sender
– Sends cluster messages to other nodes

● Receiver
– Receives messages from other nodes

● Interceptors
– Valves for cluster messages

TM

Components

● Listeners
– Receive notifications of cluster messages

– Managers support LifecycleListener
– Standard session listeners remain available

● Valves
– Inserted into the request processing pipeline

● Deployer
– Cluster wide deployment of web applications

TM

Manager Selection: Delta Manager

● Default
● Replicates every change to every node

– Maximum reliability

● Network traffic proportional to the square of the number of
nodes
– Doesn’t scale to large numbers of nodes

● Fail-over can be to any node

TM

Manager Selection: Backup Manager

● Sessions have a primary node and a backup node
– Need to use sticky sessions

● Backup node selected on a round-robin basis from all other nodes
● There is NOT a single backup node
● Every node knows the primary node and backup node for every

session
● Network traffic proportional to the number of nodes
● Failover is more complicated

TM

Backup Manager Fail-over
Node A

Primary Sessions:
30*A

Backup sessions:
10*B’, 10*C’, 10*D’

Node D
Primary Sessions:

30*D
Backup sessions:
10*A’, 10*B’, 10*C’

Node B
Primary Sessions:

30*B
Backup sessions:
10*A’, 10*C’, 10*D’

Node C
Primary Sessions:

30*C
Backup sessions:
10*A’, 10*B’, 10*D’

TM

Backup Manager Failover
Node A

Primary Sessions:
30*A

Backup sessions:
10*B’, 10*C’, 10*D’

Node D
Primary Sessions:

30*D
Backup sessions:
10*A’, 10*B’, 10*C’

Node B
Primary Sessions:

30*B
Backup sessions:
10*A’, 10*C’, 10*D’

Node C
Primary Sessions:

30*C
Backup sessions:
10*A’, 10*B’, 10*D’

TM

Backup Manager Fail-over

● Node D fails
● Sessions will be distributed to other nodes

– As soon as node failure is detected

● Backup node becomes the primary
● A new backup node is selected
● Session is copied to new backup node

TM

Backup Manager Fail-over
Node A

Primary Sessions:
40*A

Backup sessions:
20*B’, 20*C’

Node B
Primary Sessions:

40*B
Backup sessions:

20*A’, 20*C’

Node C
Primary Sessions:

40*C
Backup sessions:

20*A’, 20*B’

TM

Backup Manager Fail-over

● Not quite that simple
● Load-balancer will redistribute sessions
● New primary chosen by load-balancer may not be the same as

chosen by clustering
● More moving of primary (and possibly backup)
● End result is – on average – the same

TM

Membership

● Multicast membership
– Requires multicast to be enabled on the network

– Can be difficult to debug problems

– Scales more easily

● Static
– Simple to debug

– Adding nodes gets time consuming as cluster grows

TM

Send Options

● Delta manager
– channelSendOptions on Cluster

● Backup manager
– mapSendOptions on Manager

● Synchronous or asynchronous

TM

Send Options: Synchronous

● Request processing does not complete until session data has
been sent

● What is meant by sent?
– On the TCP stack

– Received by the other node

– Processed by the other node

● Next request to a different node will see updated sessions

TM

Send Options: Asynchronous

● Request processing continues while session data is sent
● Next request to a different node may or may not see updated

sessions

● Requires sticky sessions
● Fail-over may silently lose data

TM

Debugging: Cluster Configuration

● Need to know
– Session ID

– Current route

– Which node handled the request

● I use a simple JSP page that shows the above

TM

Debugging: Cluster Configuration

● Sanity check
– Is the route correct for the current node?

– Is load-balancing happening as expected?

– Is fail-over happening as expected?

● Keep in mind how reverse proxy / load-balancer handles failed
nodes

TM

Debugging: Applications

● Just like trying to debug any other application problem
– But harder

● Can the issue be replicated in a non-clustered environment?
● Approach depends a lot on the application

TM

Debugging: Applications

● Network / failover issues
– Look at the access logs (need session IDs)

– Look at error logs

– May need to look at network traffic

● Application issues
– Logging, logging and more logging

– Need to be able to fine tune logging

TM

Questions

TM

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

