Implement automatic observability of Tomcat applications
under GraalVM static compilation
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Background



I Challenges for modern Java applications
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Lifecycle of Java applications: VM init, App init, warmup,
App active and shutdown:
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Picture by: https://shipilev.net/talks/j1-Oct2011-21682-benchmarking.pdf



I Introduction of GraalVM native image

Compared to JVM-based
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Picture by: https://medium.com/graalvm/lightweight-cloud-native-java-applications-35d56bc45673



I GraalVM native image compilation process

Java code

The process of native compile:
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Picture by: https://www.infog.com/articles/native-java-graalvm/



I Impacts of GraalVM on the Java Ecosystem

Dynamic Features: Dynamic class loading, reflection, dynamic proxies, JNI, and serialization are no longer fully supported

Platform Independence: Without the JVM and bytecode, the platform independence that is a hallmark of the Java platform is no longer available

Ecosystem Tools: The original Java ecosystem tools for monitoring, debugging, and Java Agents are ineffective without the JVM and bytecode

Microservices Frontends & APIs

[ » OTel Collector #

Impact of GraalVM in observability




Solution



l ldea to instrument under GraalVM

Java Agent work process:

java -javaagent:agent.jar -cp .
org.example.Main

1. Register transformer for class C

2. Trigger 3. Get C’
callback
preMain main load classes Running Phase
With GraalVM, bytecode is no longer used. Therefore, a. How to transform target classes before runtime?

we aim to perform these enhancements during

compilation: b. How to load transformed classes before runtime?



I Overall design

Implemented static instrumentation before runtime:
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I Transform and record classes

Implemented an interceptor in native image agent to collect transformed classes:

APP
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Native support
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preMain adapter. |

Instrumentationimpl
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Collect transformed class C’

1. How to avoid affecting GraalVM's
compilation behavior?

2. How to achieve class isolation?

Runtime generated classes
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Il How to apply Transformed Classes

Load transformed classes by -classpath and --module-path:

GraalVM
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— \ classpath o ...
Native Y_—_
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Demonstration



I Demonstration



I Experimental Result

Comparison of startup speed and memory overhead: JVM vs. GraalVM native image with Java Agent

Startup Speed
(JVM)

Memory Overhead
(JVM)

Startup Speed
(GraalVM)

Memory Overhead
(GraalVM)

7.541s

402MB

0.117s (-98%)

96MB (-75%)

11.323s

408MB

0.168s (-98%)

141MB (-65%)

10.717s

420MB

0.152s (-98%)

128MB (-69%)

8.116s

394MB

0.119s (-98%)

107MB (-73%)

32 vCPU/64 GiB/5 Mbps



Future works



| Future works

In the future, we plan to focus on the following aspects:

1. Conduct comprehensive test cases over multiple signals(metrics, trace, logs, and etc).
2. Consolidate the pre-running phase and the native compilation phase into a unified

phase to ensure transformed classes are universally collected.
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