Implement automatic observability of Tomcat applications
under GraalVM static compilation

Zihao RAO, Alibaba Cloud

={ 1]

CC

THE ASF CONFERENCEI
CODE
1. Background
CONTENTS 2. Solution

3. Demonstration

4. Future works

Background

I Challenges for modern Java applications

Slow
startup

High
memory
overhead

Lifecycle of Java applications: VM init, App init, warmup,
App active and shutdown:

max

utilization

M
invokec

lication

VMinit | Appinit | Appactve | Appactve | Shutdown M€
(warmup) (steady) |

First conscious action Reached
from application semi-optimal performance

Lifecycle of Java apps

Picture by: https://shipilev.net/talks/j1-Oct2011-21682-benchmarking.pdf

I Introduction of GraalVM native image

Compared to JVM-based

environments, GraalVM offers the Lifecycle of
1 Java apps
following advantages ¥a ap
GraalVM
Enhanced startup speed: By eliminating VM init, JIT, e
and interpretation overhead, the startup time is
significantly reduced
Java Microservice: Memory Footprint ~5x lower
Helidon I > v
Improvements
, wicronaue [sing of different
Reduced memory overhead: By removing the memory frameworks
footprint associated with the VM and applying numerous cwrs [T e
optimizations, memory usage is significantly reduced B e e s Nl weic S G g

Picture by: https://medium.com/graalvm/lightweight-cloud-native-java-applications-35d56bc45673

I GraalVM native image compilation process

Java code

The process of native compile:

Input:

Java bytecode All classes from application, _ Output:
libraries, and VM Native executable

Native Compile Run itk
icati) , ead-of-Time
* ‘ Application Points-to Analysis Compilation Codein
Libraries Text Section
Run Initializations
Native JDK Image Heap in
|mage SUbsrate Vi Heap Snapshotting Image Heap Data Section

Writing

L

Iterative analysis until
fixed point is reached

Operating System

Process of native compilation

Comparation of JVM and native compilation

Picture by: https://www.infog.com/articles/native-java-graalvm/

I Impacts of GraalVM on the Java Ecosystem

Dynamic Features: Dynamic class loading, reflection, dynamic proxies, JNI, and serialization are no longer fully supported

Platform Independence: Without the JVM and bytecode, the platform independence that is a hallmark of the Java platform is no longer available

Ecosystem Tools: The original Java ecosystem tools for monitoring, debugging, and Java Agents are ineffective without the JVM and bytecode

Microservices Frontends & APIs

[» OTel Collector #

Impact of GraalVM in observability

Solution

l ldea to instrument under GraalVM

Java Agent work process:

java -javaagent:agent.jar -cp .
org.example.Main

1. Register transformer for class C

2. Trigger 3. Get C’
callback
preMain main load classes Running Phase
With GraalVM, bytecode is no longer used. Therefore, a. How to transform target classes before runtime?

we aim to perform these enhancements during

compilation: b. How to load transformed classes before runtime?

I Overall design

Implemented static instrumentation before runtime:

APP

transformed GraalVM Native
bmmmn dl Native image e e feud X ' ° IEEELL
image

Collect transformed class C’

OTel Agent

Native support

Pre Running Phase ; Static Compilation Phase i Running Phase

»

I Transform and record classes

Implemented an interceptor in native image agent to collect transformed classes:

APP

+ m —> EVE image agent —

OTel Agent

4 1.JDK transformerLl

Native support

X 2.Class Isolation |
preMain adapter. |

Instrumentationimpl
#transform

Collect transformed class C’

1. How to avoid affecting GraalVM's
compilation behavior?

2. How to achieve class isolation?

Runtime generated classes

-

Transformed APP classes
—_/—

preMain relevant config

I

GraalVM .

Agent support

Static

Pre Running Phase

Compilation Phase

»

Il How to apply Transformed Classes

Load transformed classes by -classpath and --module-path:

GraalVM
APP
— \ classpath o ...
Native Y_—_
...... Al
== = h
Transformed APP module-path patc
classes _—>

Pre Running ' :
Phase Static Compilation Phase Running Phase

v

Demonstration

I Demonstration

I Experimental Result

Comparison of startup speed and memory overhead: JVM vs. GraalVM native image with Java Agent

Startup Speed
(JVM)

Memory Overhead
(JVM)

Startup Speed
(GraalVM)

Memory Overhead
(GraalVM)

7.541s

402MB

0.117s (-98%)

96MB (-75%)

11.323s

408MB

0.168s (-98%)

141MB (-65%)

10.717s

420MB

0.152s (-98%)

128MB (-69%)

8.116s

394MB

0.119s (-98%)

107MB (-73%)

32 vCPU/64 GiB/5 Mbps

Future works

| Future works

In the future, we plan to focus on the following aspects:

1. Conduct comprehensive test cases over multiple signals(metrics, trace, logs, and etc).
2. Consolidate the pre-running phase and the native compilation phase into a unified

phase to ensure transformed classes are universally collected.

COMM

CODE

Thank you
Q&A

eimea’, | :

S | St e |

